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1 Retired.
Exact series solutions for the computation of temperature in parallel plate channels and circular passages
are well known. The inclusion of the contribution of axial conduction leads to a set of modified Graetz
type problems for these fluid passages. The emphasis of this paper is the study of the asymptotic varia-
tions of wall heat flux values adjacent to the thermal entrance location for parallel plate ducts. The
acquired results show interesting variations for different values of the Peclet number near the thermal
entrance location. This study reports the unique variations of the wall heat flux values near the location
where the wall temperature changes as the Peclet number changes.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Studies of heat transfer to flow in ducts without the effect of ax-
ial conduction are widely available in the literature [1–5]. They in-
clude flow in ducts with different cross section profiles. A survey of
earlier work describing heat transfer to flow passing through ducts
is in [1,2]. Basic information concerning the heat transfer within
different passages is in [3–5]. Other studies investigate heat trans-
fer through fluid saturated porous passages, when the axial con-
duction is negligible [6–11].

In the presence of axial conduction, exact series solutions are
limited to Graetz type analysis for one-dimensional passages.
Inclusion of axial conduction within these passages is available in
[12–17]. Details for the series solution of temperature field in par-
allel plate channels and circular ducts are in Lahjomri and Oubarra
[12]; their methodology is further extended to laminar Hartmann
flow in the thermal entrance region in [13]. The Graetz type series
solution for flow through saturated porous passages is in Minko-
wycz and Haji-Sheikh [14], for parallel plate channels and circular
ducts. The effect of axial conduction for flow in fluid saturated por-
ous passages with walls at uniform temperature are numerically
determined and reported in Nield et al. [18] for parallel plate chan-
nel and in Nield et al. [19] for circular ducts. A numerical study of
ll rights reserved.

: +1 817 272 2952.
the thermal entrance heat transfer in circular pipes with prescribed
wall heat flux is in [20].

It is expected that the axial conduction can have a strong effect
on the heat transfer to flow through various flow passages near the
entrance region. The convergence of the temperature solutions in
parallel plate channels show the convergence for the Graetz type
series solution is slow when x is very small. Understanding the nat-
ure of the wall heat flux phenomenon near the thermal entrance
region is emphasized in this paper. Accordingly, this paper uses a
methodology in [21] to enhance the capability of existing powerful
analytical tools for determination of the effect of the axial thermal
conduction at small distances from the thermal leading edge. In the
following sections, the classical series solution and asymptotic
solution based on the methodology in [21] are presented and their
variations are discussed. The results from this study show that, in
this fluid passage, the velocity profile has relatively small effect on
heat transfer near the thermal entrance location and the transport
of energy is primarily due to thermal conduction.

2. The temperature solutions

Consider a classical steady, laminar, and hydrodynamically fully
developed flow between two parallel plates 2H apart, see Fig. 1.
The velocity profile for flow through parallel plate channels is

u
U
¼ 3

2
1� ŷ

H

� �2
" #

; ð1Þ

where U is the average flow velocity.
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Nomenclature

A cross section area 2H �W (m2)
Am,Bm constants in temperature solution
cn coefficient in Eq. (10)
cp specific heat (J/kg K)
Dm coefficient for bulk temperature
Dh hydraulic diameter 4A/P = 4H,m
Em coefficient for wall heat flux
h heat transfer coefficient in Eq. (15), (W/m2 K)
h0 heat transfer coefficient in Eq. (13) (W/m2 K)
H parallel plate channel dimension
k thermal conductivity (W/m K)
m,n indices
N selected number of terms in series
Nu0 h0H/k, see Eq. (13)
NuD hDh/k
Pe Peclet number, UH/a
Pr Prandtl number lcp/k
qw local wall heat flux (W/m2)
Q total heat flux from a wall (W)
Q* dimensionless heat flux from a wall, Eq. (21)
Ti wall temperature when x < 0 (K)
Tb bulk or mean temperature (K)
Tw wall temperature when x > 0 (K)
u velocity (m/s)
U average velocity (m/s)

x x̂=H
x̂ axial coordinate (m)
�x ðx̂=HÞ=Pe
y ŷ=H
ŷ; ẑ coordinates normal to x̂ in Fig. 1 (m)
Y1,Y2 eigenfunctions, x < 0, x > 0
W fluid width in ẑ-direction

Greek symbols
a thermal diffusivity (m2/s)
b, bm eigenvalues when x < 0
C perimeter W + W (m)
k, km eigenvalues when x > 0
h dimensionless temperature
q density (kg/m3)

Subscripts
1, 2 x < 0 or x > 0
b bulk temperature
c by conduction
L large x
S small x

Superscripts
�, + x < 0 or x > 0

5812 A. Haji-Sheikh et al. / International Journal of Heat and Mass Transfer 51 (2008) 5811–5822
In the absence of frictional heating and temperature depen-
dence of the thermal conductivity, the temperature distribution
obtainable from the energy equation is

u
oT
ox̂
¼ k

qcp

o2T
ox̂2 þ

o2T
oŷ2

 !
: ð2Þ

Introduce the Peclet number Pe = qcpHU/k and the dimensionless
coordinates x ¼ x̂=H, y ¼ ŷ=H, and �x ¼ x=Pe into this equation; then
Eq. (2) becomes:

o2T
oy2 ¼

u
U

oT
o�x
� 1

Pe2

o2T
o�x2 : ð3Þ

The wall temperature, as depicted in Fig. 1, is the constant Ti when
x < 0 and it is the constant Tw, when x > 0. For convenience in math-
ematical formulation the dimensionless temperature is designated
as h1 = (T � Ti)/(Ti � Tw), when x < 0 and h2 = (T � Tw)/(Ti � Tw),
when x > 0. Using these dimensionless temperature functions, the
Fig. 1. Schematic of a parallel plate chann
governing partial differential equation, Eq. (3), for these two regions
takes the following forms

o2hi

oy2 ¼
u
U

ohi

o�x
� 1

Pe2

o2hi

o�x2

with
ohi

oy
¼ 0 at y ¼ 0 and hi ¼ 0 at y ¼ 1

ð4Þ

for i = 1 or 2. Other conditions are h1(�1,y) = 0 and h2(1,y) = finite
while the compatibility conditions are ðoh2=o�xÞ�x¼0 ¼ ðoh1=o�xÞ�x¼0 and
h2 (0,y) � h1(0,y) = 1.

The emphasis of this study is to predict heat transfer rate for all
x values between 0 and 1. For larger values of x, the solution for
each hi in Eq. (4) with the specified boundary condition is sought.
The mathematical formulation of these solutions at large values
of x is readily available in the literature [12,14]. However, because
of minor differences, a brief description of the solution is in the
next section. The following sections also include the asymptotic
solutions at very small x values.
el with temperature change at x̂ ¼ 0.
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2.1. Extended graetz solution

The solution of the partial differential equation, Eq. (4), is
obtainable using the method of separation of variables by setting
hið�x; yÞ ¼ Xð�xÞYðyÞ for i = 1 or 2. The substitution of this functional
form for hi in Eq. (4) yields:

Y 00

Y
¼ u

U
X 0

X
� 1

Pe2

X 00

X
: ð5aÞ

Although u = u(y) is present on the right side of Eq. (5a), it is possi-
ble to separate the variables. Let X be defined by equation:

X0ð�xÞ ¼ b2Xð�xÞ; ð5bÞ

and, following differentiation and appropriate substitution, to get
X00ð�xÞ ¼ b2X0ð�xÞ ¼ b4Xð�xÞ. This leads to the following differential
equation for computation of Y(y):

Y 00ðyÞ � b2 u
U

� �
YðyÞ þ b4

Pe2 YðyÞ ¼ 0; ð6Þ

where the parameter b in Eq. (6) is the eigenvalue. Since the solu-
tion for Xð�xÞ in Eq. (5b) is expðb2�xÞ multiplied by a constant, this
methodology leads to the following temperature solutions for h1

and h2:

hið�x; yÞ ¼

P1
m¼1

Ameb2
m�xYi;mðyÞ; for i ¼ 1

P1
m¼1

Bmeb2
m�xYi;mðyÞ; for i ¼ 2

8>><
>>: : ð7Þ

In this equation h1ð�x; yÞ is finite and goes to zero as �x! �1 and
h2ð�x; yÞ is also finite and goes to zero as �x! þ1. Therefore, when
�x < 0, the eigenvalue bm is real; however, when �x > 0, the coeffi-
cient bm for inclusion in Eq. (7) becomes imaginary. The compatibil-
ity conditions at �x ¼ 0 provided the coefficients Am and Bm as they
appear in Appendix A. This leads to the following forms for
h1ð�x; yÞ and h2ð�x; yÞ:

h1ð�x; yÞ ¼
X1
m¼1

AmY1;mðyÞe�b2
m j�xj when x < 0; ð8aÞ

and by selecting b = ik in Eqs. (5b) and (6) to get

h2ð�x; yÞ ¼
X1
m¼1

BmY2;mðyÞe�k2
m�x when x > 0: ð8bÞ

Therefore, both bm and km, in Eqs. (8a,b), for the h1ð�x; yÞ and h2ð�x; yÞ
solutions are positive and real.

Because the computation of h2ð�x; yÞ is the primary objective in
heat transfer applications, Eq. (6) is initially utilized after replacing
b with ik. Once the value of u/U from Eq. (1) is placed in the mod-
ified form of Eq. (6), it becomes:

Y 00ðyÞ þ 3
2

k2½1� ðyÞ2�YðyÞ þ k4

Pe2 YðyÞ ¼ 0; ð9Þ

with boundary conditions Y
0
(y)=0 at y = 0 and Y(y) = 0 at y = 1. The

solution of this differential equation has a hypergeometric power
series form

YðyÞ ¼
X1
n¼0

cnyn; ð10Þ

wherein y ¼ ŷ=H. After substituting Y(y) from Eq. (10) in Eq. (9), the
result is

X1
n¼2

cnnðn� 1Þyn�2 þ 3
2

k2ð1� y2Þ
X1
n¼0

cnyn þ k4=Pe2
� �X1

n¼0

cnyn ¼ 0:

ð11Þ
The term that includes y0 suggests c0 = constant = 1. Because of
symmetry in y-direction, the parameter n is an even integer. When
n > 1, the other constants are obtainable from the relations:

c2 ¼ �
1
2
½k4=Pe2 þ ð3=2Þk2�; ð12aÞ

cnþ2 ¼ �
ðk4=Pe2Þcn þ ð3=2Þk2ðcn � cn�2Þ

ðnþ 2Þðnþ 1Þ : ð12bÞ

Substitution of these cn coefficients in Eq. (10) produces the eigen-
function Y2(y) to be used for determination of h2ð�x; yÞ in Eq. (8b).
After replacing k2 with�b2, Eqs. (12a,b) provide a new set of cn coef-
ficients; Eq. (10) produces the eigenfunction Y1(y) for determination
of h1ð�x; yÞ in Eq. (8a). For either region, it becomes necessary to
simultaneously determine the coefficients cn and the eigenvalues
b2

m and k2
m for m = 1,2, . . . . This requires the inclusion of the eigen-

condition Yi(1) = 0 to be used for finding these eigenvalues.
Once the functional forms of Yi(y) are in hand, the thermal com-

patibility conditions at �x ¼ 0 location h2 (0,y) � h1(0,y) = 1 and
oh1=o�xj�x¼0 ¼ oh2=o�xj�x¼0 provide Am and Bm parameters. The method
of determination of Am and Bm using these compatibility conditions
is combined with that for circular pipes in [12]. Summaries of the
orthogonality conditions for determination of Am and Bm for paral-
lel plate ducts and other related quantities are in the Appendix A.

2.2. The small-x solution

At very small x values, the existing solutions of Eq. (2) are in the
infinite series form. Convergences of these series become very dif-
ficult when x is very small. It is shown in [21] that, for flow over a
flat plate, the two limiting solutions for slug flow and no flow con-
verge near the thermal entrance location. Therefore, a no flow con-
dition serves as the lower limit and a slug flow condition serves as
the upper limit. It is expected that the actual solution would fall
between these two solutions. These two limiting solutions, as pre-
sented in [21], are utilized in the subsequent formulations. The
dimensionless quantity to be used is the special Nusselt number:

Nu0 ¼
h0H

k
; ð13Þ

where h0 = qw/(Tw � Ti).
To demonstrate the special feature of h0, the computed Nu0 data

from the series solution, using Eqs. (8b) and (A.4), are plotted in
Fig. 2. Different symbols indicate the pre-selected number of eigen-
values N as presented in the figure; they show the convergence of
Nu0(x) for Pe = 1 as N increases in the h2 solution. It is desirable to
compare these series solutions with that for a slug flow over a flat
plate [21], wherein the slug flow and no flow solutions converge to
the same values at very small x̂. The solid line in Fig. 2 shows this
expected upper limit for Nu0 taken from [21], Eq. (23b), since
St = Nu0/Pe, as

Nu0 ¼
Pe
2p

expðxPe=2Þ½K0ðxPe=2Þ þ K1ðxPe=2Þ�; ð14Þ

where K0(xPe/2) and K1(xPe/2) are the modified Bessel functions.
This equation approaches the dash line for the no flow condition
when x is very small. It is remarkable that, at small x, the series
solution data clearly approach the dash line for Nu0 = 1/(px), taken
from [21], Eq. (16) for the no flow condition. Therefore, Eq. (14)
asymptotically approaches Nu0 ffi 1/(px) as x becomes very small.
Since this lower limit is for no flow condition, it implies that at
small x values, the data for other Peclet numbers should behave
similarly. To show this unique behavior, the data for Pe = 2, 5, and
10 are plotted in Fig. 3 in addition to those for Pe = 1. Indeed, the
data in Fig. 3 for the Pe = 2, 5, and 10, show similar behaviors as
those for Pe = 1. For comparison, the solid lines represent Eq. (14)
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for Pe = 1, 5, and 10. Moreover, when x < 0, the dash line in Fig. 3
serves as an upper limit for Nu0 when x is very small x.

3. Results and discussion

The definition of Nu0 presented in earlier sections uses the heat
transfer coefficient h0 = qw/(Tw � Ti), where both qw and h0 are po-
sitive when Tw > Ti. This is different from the standard definition of
the heat transfer coefficient; e.g., when �x > 0, h = qw/(Tw � Tb),
where Tb is the bulk or mean temperature. Then, the commonly
used heat transfer coefficient h is related to the earlier defined h0

by the relation:

h ¼ h0

hb

� �
: ð15Þ
To demonstrate the variation of the bulk temperature hb = (Tb � Tw)/
(Ti � Tw), samples of computed data are presented in Column 6 of
Table 1, where hbð�xÞ ¼ h2;bð�xÞ, see Eq. (A.5). Fig. 4 shows that the
variations of hbð�xÞ as a function of the axial coordinate �x for different
values of Pe, when �x > 0. Also, the solid lines in Fig. 4 indicate that
the slopes of hb lines are small at very small values of �x. The dot-
dash line in this figure represents the hb values in the absence of ax-
ial conduction.

As discussed in [21], thermal conduction dominates when x is
very small. The study in [21] is validated for flow in parallel plate
ducts by the data presented in Figs. 2 and 3 as they show that ther-
mal conduction near the entrance region dominates. Indeed, as is
demonstrated in [21], both the no flow solution and the slug flow
solution produce Nu0 = 1/(px) with x ¼ x̂=H near the thermal en-
trance location. The utilization of this concept enables the determi-



Table 1a
Selected values of Nu0 = h0H/k, NuH = hH/k, Q*, and hb for heat transfer in parallel plate
ducts when Pe = 1 and 2

Pe �x ¼ x
Pe

h0 H
k

hH
k Q* hb

1 0.004 80.012 119.97 2.4627 0.6669
0.006 53.489 80.385 2.3328 0.6654
0.008 40.225 60.590 2.2404 0.6639
0.01 32.267 48.713 2.1685 0.6624
0.02 16.347 24.961 1.9435 0.6549
0.04 8.3817 13.091 1.7143 0.6403
0.06 5.7214 9.1391 1.5768 0.6260
0.08 4.3876 7.1668 1.4770 0.6122
0.10 3.5844 5.9865 1.3979 0.5987
0.2 1.9574 3.6489 1.1389 0.5364
0.4 1.0967 2.5364 0.8517 0.4324
0.6 0.7729 2.2110 0.6684 0.3496
0.8 0.5877 2.0765 0.5337 0.2830
1.0 0.4617 2.0133 0.4295 0.2293
2 0.1567 1.9503 0.1494 0.0803
4 0.0192 1.9477 0.0184 0.0099
6 2.37 E�3 1.9477 2.26 E�3 1.22 E�3

2 0.001 158.89 201.86 1.7513 0.7871
0.002 80.351 102.72 1.6403 0.7822
0.004 40.564 52.044 1.5285 0.7794
0.006 27.299 35.144 1.4624 0.7768
0.008 20.665 26.694 1.4151 0.7742
0.01 16.684 21.624 1.3780 0.7715
0.02 8.7153 11.487 1.2601 0.7587
0.04 4.7159 6.4241 1.1348 0.7341
0.06 3.3702 4.7426 1.0557 0.7106
0.08 2.6886 3.9067 0.9958 0.6882
0.1 2.2730 3.4092 0.9464 0.6667
0.2 1.3967 2.4457 0.7721 0.5711
0.4 0.8616 2.0374 0.5557 0.4229
0.6 0.6131 1.9494 0.4104 0.3145
0.8 0.4509 1.9255 0.3049 0.2342
1 0.3346 1.9186 0.2270 0.1744
2 0.0766 1.9157 0.0521 0.0400
4 4.03 � 10�3 1.9157 2.74 � 10�3 2.11 � 10�3

Table 1b
Selected values of Nu0 = h0H/k, NuH = hH/k, Q*, and hb for heat transfer in parallel plate
ducts when Pe = 5 and 10

Pe �x ¼ x
Pe

h0 H
k

hH
k Q* hb

5 0.001 65.043 71.569 1.2026 0.9088
0.002 33.207 36.631 1.1571 0.9065
0.004 17.281 19.158 1.1103 0.9020
0.006 11.966 13.331 1.0817 0.8976
0.008 9.3037 10.415 1.0607 0.8933
0.01 7.7029 8.6647 1.0438 0.8890
0.02 4.4773 5.1553 0.9866 0.8685
0.04 2.8148 3.3876 0.9173 0.8309
0.06 2.2258 2.7935 0.8676 0.7968
0.08 1.9106 2.4967 0.8265 0.7653
0.1 1.7075 2.3206 0.7905 0.7358
0.2 1.2184 1.9969 0.6483 0.6101
0.4 0.8086 1.9011 0.4504 0.4253
0.6 0.5630 1.8931 0.3148 0.2974
0.8 0.3936 1.8924 0.2201 0.2080
1 0.2753 1.8923 0.1540 0.1455
2 0.0461 1.8923 0.0258 0.0243

10 0.0004 81.572 85.375 1.0964 0.9555
0.0006 55.046 57.653 1.0831 0.9548
0.0008 41.779 43.788 1.0735 0.9541
0.001 33.817 35.467 1.0660 0.9535
0.002 17.882 18.818 1.0420 0.9503
0.004 9.8892 10.474 1.0160 0.9442
0.006 7.2040 7.6781 0.9993 0.9382
0.008 5.8475 6.2705 0.9863 0.9325
0.01 5.0235 5.4191 0.9755 0.9270
0.02 3.3142 3.6764 0.9357 0.9015
0.04 2.3525 2.7431 0.8809 0.8576
0.06 1.9709 2.4049 0.8381 0.8195
0.08 1.7495 2.2280 0.8011 0.7852
0.1 1.5982 2.1207 0.7677 0.7536
0.2 1.1981 1.9296 0.6307 0.6209
0.4 0.8072 1.8887 0.4339 0.4274
0.6 0.5561 1.8872 0.2991 0.2947
0.8 0.3834 1.8871 0.2063 0.2032
1 0.2644 1.8871 0.1422 0.1401
2 0.0412 1.8871 0.0222 0.0218
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nation of NuD for small x values following the determination of
hb(0) and utilization of Eq. (15). Then, the asymptotic values NuD

are obtained from the methodology presented in [21] for x > 0,
from equation:

NuD;S ¼
Dh

H

� �
1

hbð0Þ

� �
1

pPe�x

� �
: ð16Þ

Using �x ¼ x=Pe, NuD,S is plotted as dash lines in Fig. 5 for Pe = 1,2,5,
and 10. Also, Fig. 5 shows the series solution for NuD = 4NuH as a
function of �x ¼ ðx̂=HÞ=Pe for the same Peclet numbers, using (A.6).
A sample of the plotted data is readily available since NuD = 4(hH/
k) and the values of hH/k are in the Column 4 of Table 1 for these
Pe values. There is a remarkable agreement between these two sets
of data, at small x values, that attest to the validity of the finding re-
ported in [21].

Also, it is possible to estimate the values of hb(0) for other Pe
values from the new empirical Eq. (B.1) in Appendix B:

hbð0Þ ¼
0:95þ Pe4=3

1:90þ Pe4=3 ; ð17Þ

which predicts the exact hb(0) values with a reasonable accuracy.
This equation satisfies the limiting conditions: hb(0) = 1, when
Pe =1 and hb(0) = 1/2 when Pe = 0 and yields hb(0) values with an
error of less than 0.45% for Pe P 1. The computed values of hb(0)
for different values of Pe are in Tables 2a,b. It is to be noted that
hb(0) in Table 2b are the same as those in Table 2a although the
eigenvalues and other related parameters are different. Then, after
placing hb(0) from Eq. (17) in Eq. (16), the small x asymptotic solu-
tion for NuD becomes:
NuD;S ¼
4ð1:90þ Pe4=3Þ

pPeð0:95þ Pe4=3Þ
1
�x

� �
: ð18Þ

The dashed lines in Fig. 5 are from this asymptotic solution, Eq. (18).
There is a remarkable agreement between these empirical data and
those obtained from the series solutions near the entrance location.
Also, Fig. 5 includes the classical variation of NuD as a function of
�x ¼ x=Pe in the absence of axial conduction [22]. For Pe 6 10, the
data in Fig. 5 show rather large errors in the NuD values in the ther-
mal entrance region when axial conduction is neglected and the
dash lines in Fig. 5 make Eq. (18) a valuable tool for the estimation
of error if the axial thermal conduction is neglected. When �x is very
large NuD = 7.791 for Pe = 1 which is slightly larger than 7.541 for no
axial conduction case. The other NuD values are in Table 2.
3.1. Approximate solutions for bulk temperature

The availability of approximate solutions for the bulk tempera-
ture and heat transfer coefficient is desirable in various engineer-
ing applications. Information of this type is useful in the design
of heat exchangers and other similar devices.

Knowledge of the bulk temperature facilitates predicting the
energy transferred to the moving fluid. For convenience of this pre-
sentation, a single definition for the bulk temperature,
hb = (Tb � Tw)/(Ti � Tw), is selected for the entire domain. Consider
first the bulk temperature, for �x < 0. The definition of bulk temper-
ature is
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hb ¼
Z 1

0

uðyÞ
U

� �
T � Tw

Ti � Tw

� �
dy: ð19aÞ

Now, replace (T � Tw)/(Ti � Tw) by 1þ h1ð�x; yÞ and use Eq. (8a) to get
hbð�xÞ ¼ 1þ h1;bð�xÞ or

hb ¼ 1þ
X1
m¼1

Am

Z 1

0

uðyÞ
U

� �
Y1;mðyÞdy

� �
e�b2

m j�xj

¼ 1þ
X1
m¼1

D�me�b2
m j�xj; ð19bÞ

with u(y)/U from Eq. (1). Consider next �x > 0, replacing (T � Tw)/
(Ti � Tw) in Eq. (19a) by h2ð�x; yÞ from Eq. (8b) yields hbð�xÞ ¼ h2;bð�xÞ or

hb ¼
X1
m¼1

Bm

Z 1

0

uðyÞ
U

� �
Y2;mðyÞdy

� �
e�k2

m�x ¼
X1
m¼1

Dþme�k2
m�x: ð19cÞ
When �x is relatively large and �x > 0, the only needed eigenvalue is
k1; computed parameters Dþ1 and k2

1 are in given Table 1b for differ-
ent Pe numbers. Then, one can set hb;LðxÞ ffi Dþ1 expð�k2

1x=PeÞ when x
is large and set hb;SðxÞ ¼ hbð0Þ expð�k2

1x=PeÞwhen x is small. A linear
interpolation between hb,S(x) and hb,L(x) leads to a useful and valu-
able relation:

hbðxÞ ¼
xhb;LðxÞ þ 0:25hb;SðxÞ

xþ 0:25

� �

¼ xD1 þ 0:25hbð0Þ
xþ 0:25

� �
expð�k2

1x=PeÞ; ð20aÞ

for heat exchanger design applications. Values computed using this
equation are plotted in Fig. 6a and are compared with those appear-
ing in Table 1. The results show good accuracy for this method of



Table 2a
First eigenvalue, first constant Eþ1 for Nu0, and first constant Dþ1 for hb, hb(0), and
NuD(1) for different Pe values, when x > 0

Pe k2
1 Dþ1 Eþ1 hb(0) NuD(1)

0.00 0.0 0.49277 1.0 0.5 8.1174
0.01 0.015643 0.49450 1.00290 0.50184 8.1124
0.05 0.076927 0.50144 1.01453 0.50918 8.0929
0.1 0.15069 0.51011 1.02908 0.51835 8.0695
0.2 0.28915 0.52737 1.05814 0.53662 8.0258
0.5 0.63897 0.57785 1.14363 0.58997 7.9165
1 1.04790 0.65338 1.27260 0.66998 7.7909
2 1.47231 0.76025 1.45644 0.78472 7.6629
3 1.65374 0.81902 1.55796 0.85017 7.6089
5 1.78783 0.86934 1.64508 0.91109 7.5693
7 1.83297 0.88785 1.67715 0.93744 7.5560
10 1.85887 0.89886 1.69624 0.95673 7.5484
20 1.87846 0.90739 1.71103 0.97866 7.5426
30 1.88218 0.90903 1.71387 0.98585 7.5415
50 1.88409 0.90987 1.71534 0.99155 7.5410
70 1.88462 0.91011 1.71575 0.99398 7.5408
100 1.88490 0.91023 1.71597 0.99579 7.5408
1 1.88518 0.91035 1.71617 1.00000 7.5407

Table 2b
First eigenvalue, first constant jE�1 j for Nu0, and first constant jD�1 j for hb, hb(0), and
NuD(1) for different Pe values, when x < 0

Pe b2
1=Pe jD�1 j jE�1 j hb (0) NuD(�1)

0.00 p/2 48/p4 1 1/2 p4/12
0.01 1.57733 0.49103 0.99710 0.50184 8.122
0.05 1.60373 0.48410 0.98551 0.50918 8.143
0.1 1.63732 0.47545 0.97108 0.51835 8.170
0.2 1.70649 0.45824 0.94250 0.53662 8.227
0.5 1.92947 0.40817 0.86040 0.58997 8.432
1 2.34822 0.33408 0.74389 0.66998 8.907
2 3.31342 0.23289 0.61562 0.78472 10.573
3 4.35107 0.18272 0.62690 0.85017 13.723
5 6.27106 0.14095 0.97378 0.91109 27.635
7 7.75776 0.10601 1.37697 0.93744 51.954
10 9.50957 0.07263 1.78668 0.95673 98.399
20 13.8495 0.03528 2.72211 0.97866 308.59
30 17.1592 0.02332 3.42434 0.98585 587.34
50 22.3954 0.01389 4.52970 0.99155 1304.4
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estimation, with error of �1% or less. In the absence of tabulated
data, relations for quick estimation of Dþ1 and k2

1 are in Appendix
B. A modified form of Eq. (20a) for determination of hb(jxj) =
1 + h1b(jxj), when x < 0, is

hbðjxjÞ ¼
jxjhb;LðjxjÞ þ 0:25hb;SðjxjÞ

jxj þ 0:25

� �
; ð20bÞ

where hb;Lð½x�Þ ¼ 1� jD�1 j expð�b2
1jxj=PeÞ and hb;Sð½x�Þ ¼ 1� ½1�

hbð0Þ� expð�b2
1jxj=PeÞ. The subscripts L and S stand for large and

small values of x. As in the previous case, the numerical values for
hb(jxj) acquired using Eq. (20b) are plotted in Fig. 6b and compared
with the solid lines for the exact series solution. The results in this
figure show excellent agreement. Indeed, when x < 0, both hb,S(jxj)
and hb,L(jxj) can estimate hb(jxj) over a relatively large range of x.

For estimation of the Nusselt number Nu0;L ¼ Eþ1 expð�k2
1x=PeÞ

at large x > 0, the parameter Eþ1 is in Table 1b for different Pe values.
An approximate relation for the estimation of Eþ1 is given in the
Appendix B. Fig. 7a shows the range of acceptable performance
for the parameters Eþ1 and k2

1 for determination of Nu0,L. Indeed,
the asymptotic solution at large x values agrees well with the exact
solution within a relatively large range depending on the Peclet
number. The dot-dash line for no flow condition, in Fig. 7a, de-
scribes the asymptotic function Nu0.S = 1/(px) employed in the for-
mulation of Eq. (18), also plotted in Fig. 7a. Similar solutions are
obtained when x < 0 and plotted in Fig. 7b. The data for solutions
at small jxj behave similar to those in Fig. 7a, except the no flow
solution serves as an upper limit.

4. Total wall heat flux

Knowledge of total heat flux from a wall of the duct is needed
information in many heat transfer applications. The computation
of total wall heat flux near the x = 0 location is a critical issue
and a related discussion is in [21]. The function Q �ð�xÞ as it appears
in Table 1 is

Q �ð�xÞ ¼
Z 1

�x
Nu0ð�xÞd�x; ð21Þ

and it is related to the total wall heat flux. When W is a length per-
pendicular to the x̂ŷ-plane, the heat flux entering a differential fluid
element from a wall is dQðx̂Þ ¼ h0ðx̂ÞðTw � TiÞWdx̂ and upon inte-
gration from x̂ to 1, it becomes

Q=W
kðTw � TiÞ

¼
Z 1

x̂

h0

k
dx̂ ¼

Z 1

x

h0H
k

dx: ð22aÞ

The functional form of the heat transfer coefficient obtained from
the series solution is h0 ¼ h0ð�xÞ. For convenience in numerical com-
putation, the axial coordinate x is replaced by �x and Eq. (22a) is
written as

Q=W
kðTw � TiÞ

¼ Pe
Z 1

�x

h0ð�xÞH
k

d�x ¼ Pe
Z 1

�x
Nu0ð�xÞd�x

¼ PeQ �ð�xÞ: ð22bÞ

The function Q �ð�xÞ data in Table 1 are finite and they approach the
hbð�xÞ data when Pe becomes large. Additionally, an examination of
the limiting solution shows that the magnitude of total wall heat
flux becomes infinite as x goes to zero. This happens when the con-
tinuum condition is no longer exists; a detailed discussion of this is-
sue is in [21]. For this reason, Eq. (22b) provides the magnitude of
total wall heat flux between any finite �x location and1. The asymp-
totic values of dimensionless wall heat flux are the subject of next
presentation. The solid lines in Fig. 8a represent the computed val-
ues of Q*(x/Pe) as they appear in Table 1, but plotted versus the axial
coordinate x. This procedure is repeated when x < 0 and the com-
puted results are in Fig. 8b.

Asymptotic values to Q*(x) at large x are readily available by
retaining the one term solution for Nu0ð�xÞ (see Eq. (A.4)) and plac-
ing it in Eq. (22b) to get

Q �LðxÞ ¼
Eþ1 e�k2

1x=Pe

k2
1

: ð23Þ

Next, applying an energy balance to a volume element with a thick-
ness dx̂, as shown in Fig. 9, leads to the relation:

qcpUHWdTb þ dQ c ¼ h0Wdx̂ðTw � TiÞ; ð24aÞ

where Qc represents the contribution of axial conduction in the x̂-
direction within the cross section of the duct. By definition
hb = (Tb � Tw)/(Ti � Tw) and, therefore, in dimensionless space, Eq.
(24a) can be written as

h0H
k

dx
Pe
¼ �dhb �

1
Pe

dQ c=W
kðTw � TiÞ

: ð24bÞ

Since hb(1) = Qc(1) = 0, the integration of the Eq. (24b) between �x
and 1, after replacing the axial coordinate, yields:

Q �ð�xÞ ¼
Z 1

�x
Nu0d�x ¼ hbð�xÞ þ

1
Pe

Q cð�xÞ=W
kðTw � TiÞ

: ð25Þ

Based on this equation, the contribution of the dimensionless axial
conduction:
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Fig. 6. A comparison of estimated hb with those from the series solution: (a) when x > 0; and (b) when x < 0.
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Q cð�xÞ=W
kðTw � TiÞ

;

is the difference between the entries within the last two columns of
Table 1, multiplied by Pe. An examination of data at small x values
in Figs. 3 and 8 leads to a relation for the estimation of the axial con-
duction at very small x values from Eq. (16) in [21]; that is �ln(x)/
(pPe) using the axial coordinate x. This makes Q �SðxÞ ¼ hbðxÞ�
lnðxÞ=ðpPeÞ with an error of ±3% when x < 0.01. Inserting a correc-
tion factor in this Q �SðxÞ function reduces error and produces

Q �SðxÞ ¼ hb;SðxÞ �
lnðxÞ
pPe

expð�k2
1x=PeÞ

ð1þ 0:02PeÞ : ð26aÞ

The factor (1 + 0.02Pe) plays a corrective role since it makes the con-
tribution of axial conduction diminish as Pe becomes very large.
When x > 0, the dash lines in Fig. 8a represent a comparison be-
tween the exact series solution and the data from Eq. (26a) with
the same hb,S(x) as used in Eq. (20a) at very small x values. A reason-
ably good agreement with the exact series solution can facilitate the
estimation of total heat flux as x goes toward zero. When x < 0, a
similar estimation for Q �S is achieved by integrating Eq. (25) from
�1 and x/Pe to get

�Q �SðjxjÞ ¼ 1� hb;SðxÞ þ
lnðjxjÞ
pPe

expð�b2
1jxj=PeÞ

1þ 0:02Pe
ð26bÞ

with the same functional relation for the contribution of the axial
conduction as used in Eq. (26a). The asymptotic Q �SðjxjÞ data using
Eq. (26b) are plotted in Fig. 8b and they agree well with the solid
lines for the exact solution. The function hb,S(x) in Eq. (26a) is the
same as that used in Eq. (20b). Also, the Fig. 8b includes the corre-
sponding Q �LðjxjÞ values using the parameters in Table 2b and Eq.
(23) after replacing k2

1 with b2
1 and x with jxj. For large Peclet num-

bers, it is also possible to get Q* estimations at large- and small-x val-
ues by replacing Q �S with Q* and hb,S with hb as appears in Eqs. (20a,b).
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This is because the contribution of axial conduction diminishes as x
becomes large when Pe is large, see Table 1 for Pe = 5 and 10.

An examination of Eq. (26a) shows that the function ln(x)
slowly goes to infinity as x goes to infinity and, therefore, the expo-
nential terms in Eqs. (26a,b) serve as damping factors. Also, ln(x)
slowly goes to �1 as x goes toward zero. This increase in the mag-
nitude of Q �S toward infinity, as x ? 0, is due to the step change in
the temperature solution. However, as x ? 0, the continuum condi-
tion fails and potential remedial steps are discussed in [21]. In
practical applications, it is desirable to determine the total wall
heat flux between x̂ ¼ 0 location and a finite x̂ > 0. To remedy this
situation, it is reasonable to hypothesize that h0� constant within
0 < x̂ < e region when e is a very small distance, wherein the con-
tinuum assumption does not apply. As an example, the wall heat
flux between x̂ ¼ 0 and x̂ > e is
Qð0Þ � Qðx̂Þ ¼
Z 1

0
qwWdx̂�

Z 1

x̂
qwWdx̂

¼
Z e

0
qwWd�xþ

Z 1

e
qwWdx̂�

Z 1

x̂
qwWdx̂

¼Weh0ðeÞðTw � TiÞ þ QðeÞ � Qðx̂Þ: ð27Þ

At a predetermined small e, the heat transfer coefficient relation
[21] is h0(e) = k/(pe) that can also be used to determine e if the
molecular dynamics produces a constant h0, a priori. Then, Eq.
(27) in dimensionless space becomes:

Q �ð0Þ � Q �ðxÞ ¼ 1
pPe
þ Q �ðe=HÞ � Q �ðxÞ; ð28Þ

and for a very small value of e/H, Eq. (26a) can provide an estimate
for Q*(e/H).
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Finally, the symbolic software Mathematica [23] was used to
acquire the numerical data appearing in this paper. The data
appearing in Figs. 4, 5, 7, 8, and 9 are computed with 800 eigen-
values. The parallel plate channels information show the contribu-
tion of axial conduction near the thermal entrance location.
However, other passages have geometrical differences that can af-
fect the wall heat flux at very small x values. Theoretically, when x̂
is smaller than the radius of curvature of the duct, the studies re-
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ported in [21] is applicable to other passages, with some modifica-
tions. This implies that this solution methodology could be valu-
able for determining the heat flux at the entrance regions of the
ducts with two-dimensional cross sections such as rectangular
and triangular ducts. As an example, rectangular passages filled
with metallic foams have applications in electronic cooling [6]
and the axial conduction should not be ignored, because of the
presence of metallic foam.

5. Conclusions

It is shown that the solutions presented at small values of x have
relatively small dependency on the size of velocity or the Peclet
number. Indeed, both no flow and slip flow conditions provided
reasonable limiting values for the Nusselt numbers for all velocity
forms between these limiting velocities. Fig. 3 shows that, for
x < 0.01, the Nu0(x) solution is the same as that for slug flow over
a flat plate and different Pe values have negligible effects. This
observation of thermal characteristics at small x values becomes
important in the study of heat transfer to fluid within saturated
porous passages. The frictional heating effect is ducts deserve a
separate study.

Furthermore, the data in Fig. 5 show that neglecting axial con-
duction can produce relatively large errors. Even for Pe as large
as 10, this error could become significant. However, the effect of
the axial conduction is small when the Peclet number is well above
10. These approximate values can be useful for estimation of the
effects of axial thermal conduction when the actual information
is not available. The bulk temperature correlations for these two
regions would provide useful information for design applications
with reasonable accuracy for the Peclet number above 10, below
1, and in between.

Appendix A. Application of the orthogonality conditions

The orthogonality condition for Eq. (8a) when �x < 0 isZ 1

0

b2
m þ b2

n

Pe2 � uðyÞ
U

" #
Y1;nðyÞY1;mðyÞdy ¼

0 when n–m
Nm when n ¼ m

�
;

ðA:1aÞ

and for Eq. (8b) when �x > 0 isZ 1

0

k2
m þ k2

n

Pe2 þ uðyÞ
U

" #
Y2;nðyÞY2;mðyÞdy ¼

0 when n–m

Nm when n ¼ m

�
:

ðA:1bÞ

Following the related algebraic steps, as given in [12,14], the con-
stants in Eqs. (8a,b) are

Am ¼

R 1
0

b2
m

Pe2 � uðyÞ
U

h i
Y1;mðyÞdyR 1

0
2b2

m

Pe2 � uðyÞ
U

h i
Y2

1;mðyÞdy
for �x < 0; ðA:2aÞ

and

Bm ¼

R 1
0

k2
m

Pe2 þ uðyÞ
U

h i
Y2;mðyÞdyR 1

0
2k2

m

Pe2 þ uðyÞ
U

h i
Y2

2;mðyÞdy
for �x > 0; ðA:2bÞ

for m = 1,2, . . . . After further algebraic manipulation, as shown in
[12,13], the coefficients Am and Bm become:

Am ¼
2
bm

1
½dY1;mðyÞ=dbm�y¼1

for �x < 0; ðA:3aÞ

Bm ¼ �
2
km

1
½dY2;mðyÞ=dkm�y¼1

for �x > 0: ðA:3bÞ
Note that the parameter Am depends on the parameters in the h1

solution and Bm depends on the parameters in the h2 solution; the
corresponding eigenvalues km and the eigenfunction Y2,m(y) have
values that are different from bm and Y1,m(y).

As an illustration for �x > 0, following the determination of tem-
perature T and the wall heat flux qw ¼ 1

H ðoT=oyÞjy¼1, the special
Nusselt number is obtainable from the relation:

Nu0 ¼ h0H=k ¼ �
X1
m¼1

Bm
dY2;mðyÞ

dy

				
y¼1

e�k2
m�x: ðA:4Þ

Also, the dimensionless bulk temperature h2,b when �x > 0 is

h2;b ¼
Tb � Tw

Ti � Tw
¼
X1
m¼1

Bme�k2
m�x
Z 1

0

uðyÞ
U

Y2;mðyÞdy

¼
X1
m¼1

Bme�k2
m�x � k2

m

Pe2

Z 1

0
Y2;mðyÞdy� 1

k2
m

dY2;mðyÞ
dy

				
y¼1

" #
: ðA:5Þ

Once Nu0 and hb are known, the classical Nusselt number becomes

NuD ¼ 4hH=k ¼ 4
hb

Nu0 ðA:6Þ
Appendix B. Estimation of selected parameters

The bulk temperature at x = 0 is the basic and important equa-
tion for the determination of heat flow for the wall to the fluid and
vice versa. Also for the purpose of verification, the parameter hb(0)
was determined from the series solution in both positive x and
negative x regions. Its functional values appearing in Tables 2a,b
are virtually identical and they attest to the accuracy of series solu-
tion. They can also be estimated from the equation:

hb ¼
0:5þ0:239Pe

1þ0:1Pe ; for Pe 6 1 with Error < 0:3%

0:95þPe4=3

1:9þPe4=3 ; for Pe P 1 with Error < 0:5%

(
: ðB:1Þ

The following equations can estimate the parameters k2
1, Dþ1 , and Eþ1

when x > 0 and b2
1, D�1 , and E�1 when x < 0. They can provide estima-

tion for these parameters with reasonable accuracy over a broad
range of Peclet numbers, in the absence of the actual numerical
data. As can be seen from data in Table 2a, k2

1 ¼ ðp=2ÞPe when Pe ap-
proaches 0 and k2

1 ffi 1:885 as Pe becomes very large. These lead to
the equations:

k2
1 ¼

ðp=2ÞPe
1þ0:45Pe ; for Pe 6 0:5; Error < 0:35%

1:887ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2:22Pe�1:8
p ; for Pe P 0:5; Error < 0:4%

8<
: : ðB:2Þ

Similar relations yield the Dþ1 , and Eþ1 parameters:

Dþ1 ¼
0:4927þ0:259Pe4=5

1þ0:2703Pe4=5 ; for Pe 6 0:2; Error < 0:5%

0:695þ0:377Pe�1:75

1þ4:86Pe�1:8

� �1=4
; for Pe P 0:2; Error < 0:45%

8><
>: ; ðB:3Þ

Eþ1 ¼
1þ0:71Pe
ð1þ0:5PeÞ0:74 ; for Pe 6 2; Error < 0:6%

1:713þ1:59Pe�5=3

1þ1:63Pe�5=3 ; for Pe P 2; Error < 0:5%

8<
: : ðB:4Þ

Similar correlation are prepared for estimation of parameters b2
1, D�1 ,

and E�1 when x < 0; they are

b2
1

Pe
¼

p
2

� �
1þ 0:53Peð Þ; for Pe 6 2; Error < 3%

p
2

� �
1þ 1:4Pe0:58
� �

� 4Pe0:75

ð1þ0:54PeÞ2
; for Pe P 2; Error < 2%

8<
: ;

ðB:5Þ

D�1 ¼
0:49 expð�0:451PeÞ þ 1þ0:88Pe2 expð�0:2PeÞ

100 ;

for Pe 6 5; Error < 1:5% 0:818
Pe0:544ð1þ0:495Pe0:647Þ ;

for Pe P 5; Error < 3%

8>><
>>: ; ðB:6Þ
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and

E�1 ¼
1

1þ0:5Pe5=4 þ 1:34Pe7=4

ð12:4þPe3=2Þ6=5 ; for Pe 6 3; Error < 2:5%

0:202Pe5=4

1þ0:102Pe ; for Pe P 3; Error < 3:5%

8<
: ; ðB:7Þ

In general, the errors when x < 0 is a bit larger than those for x > 0
parameters. The main cause is the diminishing the effect of axial
conduction in the x < 0 region as Pe becomes large.
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